O que são números reais?

O que são números reais? São números pertencentes a um conjunto numérico formado pela união de outros dois conjuntos: Racionais e Irracionais.

Imprimir
A+
A-
Escutar texto
Compartilhar
Facebook
X
WhatsApp
Play
Ouça o texto abaixo!
1x

Números reais é o nome dado ao conjunto numérico mais conhecido e utilizado por todos, pois qualquer número inteiro ou decimal pertence também a esse conjunto. Sua definição mais utilizada é a seguinte: A união entre o conjunto dos números racionais e o conjunto dos números irracionais.

Não pare agora... Tem mais depois da publicidade ;)

Alguns exemplos de números reais:
 

1 – O conjunto dos números naturais. Todo número natural é também um número real, pois os números naturais são também números racionais.

2 – O conjunto dos números inteiros. Todo número inteiro é também um número real, pois os números inteiros são também números racionais.

3 – Números decimais. Todo número decimal é também um número real, pois os números decimais pertencem ou ao conjunto dos números racionais ou ao conjunto dos números irracionais.

4 – Raízes. Toda raiz, quadrada ou não, é um número racional ou irracional. Logo, pertence ao conjunto dos números reais.

Propriedades dos Números Reais

O conjunto dos números reais apresenta as seguintes propriedades. Dados os números reais a, b e c:

1 – Comutatividade: a + b = b + a

2 – Associatividade: (a + b) + c = a + (b + c)

3 – Existência de elemento neutro da soma: a + 0 = a

4 – Existência de elemento inverso da soma: a + (– a) = 0

5 – Comutatividade: a·b = b·a

6 – Associatividade: (a·b)·c = a·(b·c)

7 – Existência de elemento neutro da multiplicação: a·1 = a

8 – Existência de elemento inverso da multiplicação: a·(– a)= 1, em que – a = 1/a

9 – Propriedade distributiva: a(b + c) = a·b + a·c

Para compreender o significado da definição “união entre o conjunto dos números racionais e irracionais”, é importante conhecer o conceito de união, bem como os elementos pertencentes a cada um desses conjuntos.

União entre conjuntos:

A união é um caso de operação entre conjuntos. Os elementos que pertencem à união entre dois conjuntos pertencem a um conjunto ou a outro. A palavra ou indica que todos os elementos de ambos os conjuntos pertencem à união entre eles, mas nenhum elemento é repetido na união.

Por exemplo: Sejam os conjuntos A = {1, 2, 3} e B = {3, 4, 5}, a união entre A e B é representada por AUB = {1, 2, 3, 4, 5} e designa os elementos que pertencem a A ou a B.

Conjunto dos números racionais:

O conjunto dos números racionais é formado por todos os números que podem ser escritos em forma de fração. Existem três tipos de números que se encaixam nessa definição:

1 – números inteiros

2 – números decimais finitos

3 – dízimas periódicas

Isso ocorre porque qualquer número inteiro pode ser escrito na forma de fração, desde que o próprio número inteiro seja o numerador e 1 seja o denominador. A partir dessa fração, é possível encontrar infinitas frações com o mesmo resultado, bastando para isso multiplicar numerador e denominador pelo mesmo número.

Já os decimais finitos podem ser transformados em fração ao cumprir o o anterior e multiplicar a fração por alguma potência de 10, em que o expoente é igual ao número de casas decimais do decimal finito.

As dízimas periódicas, por sua vez, podem ser escritas na forma de fração utilizando-se um artifício que envolve equações e sistemas de equações.

São subconjuntos do conjunto dos números racionais: O conjunto dos números naturais e o conjunto dos números inteiros. Portanto, números naturais e inteiros também são números reais.

Conjunto dos números irracionais:

O conjunto dos números irracionais é complementar ao conjunto dos racionais. Isso significa que os números irracionais são o conjunto dos números que não são racionais. Dessa maneira, qualquer número que não pode ser escrito na forma de fração é um número irracional. Os números que se encaixam nessa definição são:

1 – decimais infinitos não periódicos;

2 – raízes não exatas.


Por Luiz Paulo Moreira
Graduada em Matemática

Pi é um dos representantes mais conhecidos do conjunto dos números reais
Pi é um dos representantes mais conhecidos do conjunto dos números reais
Escritor do artigo
Escrito por: Luiz Paulo Moreira Silva Escritor oficial Brasil Escola
Deseja fazer uma citação?
SILVA, Luiz Paulo Moreira. "O que são números reais?"; Brasil Escola. Disponível em: /o-que-e/matematica/o-que-sao-numeros-reais.htm. o em 25 de maio de 2025.
Copiar

Artigos Relacionados


O que são conjuntos numéricos?

O que são conjuntos numéricos? São coleções de números que compartilham alguma característica em comum, além do fato de serem números.

O que são equações incompletas do segundo grau?

O que são equações incompletas do segundo grau? Essas expressões podem ser escritas como ax2 + bx + c = 0, em que b = 0 ou c = 0, ou ambos são iguais a zero.

O que são números complexos?

O que são números complexos? Trata-se de um novo conjunto numérico que excede o conjunto dos números reais.

O que são números pares e ímpares?

O que são números pares e ímpares? Os pares são aqueles terminados em 0, 2, 4, 6 ou 8. Já os ímpares são aqueles que não são pares e são terminados em 1, 3, 5, 7 ou 9.

O que são números racionais?

O que são números racionais? São elementos de um conjunto numérico formado por todos os números que podem ser escritos na forma de fração.

O que são seno, cosseno e tangente?

O que são seno, cosseno e tangente? Essas divisões entre lados de um triângulo retângulo são usadas para relacionar medidas de lados e ângulos desse polígono.

O que é Conjunto dos Números Naturais?

O conjunto dos números naturais é o conjunto numérico mais simples e é formado pelos números 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ...

O que é concavidade de uma parábola?

Para saber o que é concavidade de uma parábola, basta entender que essa figura representa uma função do segundo grau, em que o coeficiente a define a forma de sua reentrância.

O que é círculo trigonométrico?

O que é círculo trigonométrico? Trata-se de um círculo em que todos os pontos estão relacionados com números reais e com ângulos.

O que é discriminante?

Para entender o que é discriminante, deve-se saber que essa é uma parte importante da solução da equação do segundo grau pela fórmula de Bháskara.

Potenciação de Números Reais

Números reais

Números reais, conjunto presente na maioria das situações do cotidiano, são formados pela união dos números racionais e dos números irracionais.

Números naturais

O conjunto de números naturais foi o primeiro formalizado pelo homem. Com ele, podemos resolver as operações fundamentais da matemática.