O que é razão trigonométrica?

O que é razão trigonométrica? É a definição matemática capaz de relacionar os ângulos de um triângulo retângulo às medidas de seus lados.

Imprimir
A+
A-
Escutar texto
Compartilhar
Facebook
X
WhatsApp
Play
Ouça o texto abaixo!
1x

Razão trigonométrica – também chamada de relação trigonométrica – é, grosso modo, o resultado da divisão entre as medidas de dois lados de um triângulo retângulo. As razões trigonométricas são capazes de relacionar os lados com os ângulos de um triângulo retângulo. Se não fosse por elas, só seria possível construir o que conhecemos como relações métricas.

Não pare agora... Tem mais depois da publicidade ;)

Antes de definir as razões trigonométricas, é importante conhecer a nomenclatura dos lados de um triângulo retângulo.

Triângulo retângulo

Em um triângulo retângulo qualquer, o lado oposto ao ângulo reto – que é o maior lado do triângulo – recebe o nome de hipotenusa. Os outros dois recebem o nome de catetos.

Além disso, fixando o ângulo agudo θ de um triângulo retângulo qualquer, o lado oposto a esse ângulo recebe o nome de cateto oposto, e o lado que toca esse ângulo é chamado de cateto adjacente.

Razões trigonométricas

As razões trigonométricas foram criadas a partir da seguinte observação: Dois triângulos retângulos que possuem um segundo ângulo congruente são semelhantes. Isso significa que, entre esses dois triângulos, as medidas dos lados são proporcionais e as medidas dos ângulos são congruentes. Dessa forma, tomando um ângulo agudo de um triângulo retângulo, a razão entre seus lados terá o mesmo resultado.

Essa informação é importante para a trigonometria porque uma razão trigonométrica relacionada com um determinado ângulo terá um valor fixo para qualquer triângulo, independentemente do tamanho de seus lados, pois, como eles são proporcionais, a razão entre os lados correspondentes será igual.

Dito isso, definiremos as razões trigonométricas seno, cosseno e tangente:

Senθ = Cateto oposto a θ
            Hipotenusa

Cosθ = Cateto adjacente a θ
           Hipotenusa

Tgθ = Cateto oposto a θ
          Cateto adjacente a θ

Um valor para cada ângulo

O seno de um ângulo é invariável independentemente da medida do lado do triângulo de onde esse ângulo foi tirado. O triângulo a seguir foi construído no computador, de modo que possuísse um ângulo reto e outro de 30º, representado pela letra grega θ. As medidas obtidas foram:

Calculando o seno de 30°, teremos:

Sen30º = Cateto oposto a θ = 2,31 = 0,5
          Hipotenusa         4,62

O valor 0,5 é o seno de 30° para qualquer triângulo. Isso acontece porque todos os triângulos que possuem dois ângulos congruentes são proporcionais. Nesse exemplo, 0,5 é justamente a razão de proporção encontrada nos triângulos retângulos que possuem um ângulo de 30°.

Tabela trigonométrica

Os cálculos acima podem ser feitos para todos os ângulos “inteiros” - um ângulo também pode ser fracionado. As frações “decimais” são chamadas de minutos e as “centesimais” são chamadas de segundos. Utilizando as razões seno, cosseno e tangente, seria possível construir a seguinte tabela de valores:

Aplicações práticas

Por meio das razões trigonométricas, é possível relacionar os ângulos de um triângulo retângulo com os valores de seus lados. Logo, é possível descobrir a medida de um lado de um triângulo retângulo dispondo apenas das medidas de um de seus ângulos agudos e de um de seus lados. Observe o exemplo:

Calcule o valor do lado de comprimento a no triângulo seguinte:

Nesse triângulo, queremos descobrir o valor do cateto oposto ao ângulo de 60° a partir do valor de seu cateto adjacente. Observando as razões trigonométricas definidas acima, observamos que a única que relaciona o cateto oposto ao cateto adjacente é a tangente. Portanto, utilizaremos essa razão para descobrir o valor de “a”. Procurando a tangente de 60° na tabela anterior, encontramos o valor: 1,732. Observe os cálculos utilizados para descobrir a medida do lado a:

Tg60 =   Cateto oposto a 60   = a
            Cateto adjacente a 60   2

Tg60 = a
           2

1,732 = a
            2

a = 1,732·2

a = 3,464


Por Luiz Paulo Moreira
Graduado em Matemática

Lados de um triângulo retângulo a partir dos quais é possível definir razões trigonométricas
Lados de um triângulo retângulo a partir dos quais é possível definir razões trigonométricas
Escritor do artigo
Escrito por: Luiz Paulo Moreira Silva Escritor oficial Brasil Escola
Deseja fazer uma citação?
SILVA, Luiz Paulo Moreira. "O que é razão trigonométrica?"; Brasil Escola. Disponível em: /o-que-e/matematica/o-que-e-razao-trigonometrica.htm. o em 25 de maio de 2025.
Copiar

Videoaulas


Artigos Relacionados


O que são números reais?

O que são números reais? São números pertencentes a um conjunto numérico formado pela união de outros dois conjuntos: Racionais e Irracionais.

O que são polígonos convexos e regulares?

O que são polígonos convexos e regulares? Essa categorização baseia-se no formato e medidas de lados e ângulos.

O que são quadriláteros?

O que são quadriláteros? Trata-se de polígonos formados por apenas quatro lados. Os mais importantes são os trapézios e os paralelogramos.

O que são relações métricas no triângulo retângulo?

O que são relações métricas no triângulo retângulo? São expressões que relacionam apenas as medidas dos lados desse tipo de triângulo.

O que são ângulos opostos pelo vértice?

O que são ângulos opostos pelo vértice? São aqueles que estão em duas retas concorrentes, mas não são adjacentes.

O que é a lei dos senos?

Para entender o que é a lei dos senos, é preciso saber que essa proporção pode ser usada para relacionar as medidas de ângulos e lados em triângulos quaisquer.

O que é circunferência?

O que é circunferência? Trata-se de conjuntos de pontos definidos a partir de um ponto fixo (centro) e uma distância (raio).

O que é círculo trigonométrico?

O que é círculo trigonométrico? Trata-se de um círculo em que todos os pontos estão relacionados com números reais e com ângulos.

O que é círculo?

O círculo de centro P e raio r é o conjunto de pontos que estão a uma distância igual ou inferior a r de P. Círculo e circunferência são figuras geométricas distintas.

O que é geometria?

O que é geometria? É o estudo das formas presentes na natureza e das propriedades que essas formas possuem.