Ferrugem

Ferrugem é uma mancha marrom-avermelhada que surge em superfícies de ferro e em ligas ferrosas quando estão expostas ao ar e à umidade.

Ferrugem é uma mancha marrom-avermelhada que surge em superfícies de ferro ou ferrosas quando estão expostas ao ar e à umidade. Como o ferro metálico é instável em contato com o ar, ela se forma pela oxidação do ferro metálico a óxidos ou hidróxidos de ferro, comumente representados pela fórmula química FeOOH.

A ferrugem é um grande problema para a sociedade, pois danifica significativamente estruturas, como pontes, prédios, veículos, motores, entre outras, necessitando de grandes gastos com reparo e manutenção. A ferrugem é um tipo de corrosão, fenômeno espontâneo da destruição de metais e ligas. Atualmente, diversas técnicas, como a galvanização, são utilizadas para diminuir os impactos da formação da ferrugem.

Leia também: Como a maresia está relacionada à corrosão dos metais?

Resumo sobre ferrugem

  • A ferrugem é caracterizada por manchas marrom-avermelhadas que se formam sobre superfícies de ferro e ligas ferrosas que estão em contato com o ar e a umidade.

  • A ferrugem se forma quando o ferro, instável na presença do oxigênio atmosférico, é oxidado a óxidos e hidróxidos de ferro.

  • Pode ser representada pela fórmula química geral FeOOH.

  • O principal componente da ferrugem é o óxido de ferro III hidratado, Fe2O3∙H2O.

  • A ferrugem configura um grande problema para países e empresas, visto que os custos com manutenção e reparo são elevados.

  • Causa grandes impactos estruturais, pois fragiliza mecanicamente as estruturas metálicas.

  • Existem técnicas para diminuir ou mitigar a ferrugem, como a proteção catódica e a galvanização.

  • A formação de ferrugem é um tipo de corrosão.

O que causa a ferrugem?

A ferrugem é uma mancha marrom-avermelhada que surge em superfícies metálicas, mais especificamente no ferro e em ligas ferrosas, quando estão expostas à atmosfera ou submersas em águas naturais. Nesse caso, o ferro metálico (Fe) é oxidado a uma mistura de óxidos (Fe2O3∙H2O e Fe3O4) e hidróxidos (Fe(OH)2, Fe(OH)3) de ferro, os quais também são comumente representados pela fórmula FeOOH, que busca condensar todas as fases de ferro presentes na ferrugem.

O processo que ocasiona a ferrugem é quimicamente conhecido como corrosão, consequência da ação do meio sobre um material, levando à sua deterioração, a partir da sua superfície.

Como ocorre a ferrugem?

O ferro metálico é termodinamicamente instável na presença do gás oxigênio, o qual constitui cerca de 20% de nossa atmosfera e é o meio em que mais frequentemente tal metal se encontra exposto.

Nessas condições, são mais estáveis suas formas óxidas FeO (óxido de ferro II), Fe2O3 (óxido de ferro III) e Fe3O4 (óxido de ferro II, III). A presença de água torna o meio ainda mais agressivo, favorecendo a formação da ferrugem (FeOOH). Assim como sais básicos e hidróxidos precisam de água para sua formação, a ferrugem, uma mistura de óxidos e hidróxidos, também precisa, deixando claro o papel da umidade relativa do ar:

4 Fe3O4 (s) + O2 (g) + 6 H2O (l) → 12 FeOOH (s)

Já em regiões de alta umidade relativa do ar, é comum a formação da chamada pilha de corrosão, por conta da formação de uma lâmina de água que se condensa (liquefaz) sobre a superfície metálica de forma total ou parcial.

Formação da lâmina de ferrugem sobre a superfície do ferro/aço.

Nesse caso, devemos nos atentar aos potenciais-padrão de redução das espécies envolvidas:

  • Fe2+ (aq)/Fe (s): E° = –0,44 V

  • Fe3+ (aq)/Fe2+ (aq): E° = 0,77 V

  • O2 (g)/OH (aq): E° = 0,82 V

Os valores demonstram que é quimicamente espontêneo o processo em que o Fe é oxidado pelo O2 dissolvido na água, já que o ferro apresenta menor potencial-padrão de redução. Assim sendo, temos que:

Fe (s) → Fe2+ (aq) + 2 e

O2 (g) + 2 H2O (l) + 4 e → 4OH (aq)

De forma resumida, a formação de ferrugem pode ser dada como:

2 Fe2+ (aq) + O2 (g) + 4 OH (aq) → 2 FeOOH (s) + 2 H2O (l)

Embora a concentração de oxigênio no ar seja constante, sua solubilidade em água é baixa (1,4 x 10–3 mol.L–1 H2O a 20 °C), sendo ele rapidamente consumido na superfície do aço (liga metálica formada principalmente por ferro e carbono). Embora reposto constantemente pelo ar, esse oxigênio, a cada instante, deverá ar por uma camada mais espessa de ferrugem para atingir novamente o aço, o que diminui, com o tempo, a velocidade da corrosão.

Tipos de ferrugem

 Antenas parabólicas enferrujadas.

A ferrugem vai variar de coloração a depender da quantidade de oxigênio e umidade.

  • Ferrugem vermelha: rica em Fe2O3∙H2O (óxido de ferro III hidratado), ocorre em ambientes de alta oxigenação e umidade, sendo a forma mais comum, formando-se uniformemente.

  • Ferrugem amarela: rica em FeO(OH)H2O (ou Fe(OH)3), ocorre em ambientes de grande umidade, geralmente em metais encontrados com grandes quantidades de água parada, como próximo de pias e banheiras.

  • Ferrugem preta: rica em Fe3O4, ocorre em ambientes de baixa concentração de oxigênio e umidade moderada. Aparece como manchas pretas, não sendo produzida rapidamente, e, por isso, é de fácil combate.

  • Ferrugem marrom: rica em Fe2O3, ocorre em ambientes de alta concentração de oxigênio e baixa umidade (até mesmo sem). Por conta disso, é um tipo muito mais seco de ferrugem, não ocorrendo de maneira uniforme, mas sim em pontos específicos da superfície.

Veja também: Quais são os tipos de corrosão?

Composição química da ferrugem

Comumente, diz-se que a ferrugem é composta por óxido de ferro III hidratado (Fe2O3∙H2O), mas pode-se entender que outras espécies de ferro estão presentes em sua composição. Como o ferro é um metal pouco estável em contato com o oxigênio do ar, é normal que as peças desse metal tenham a formação de uma fina camada de Fe3O4 (magnetita) em sua superfície. O constante contato com o oxigênio do ar e a umidade faz surgirem outras espécies oxidadas, como FeOOH, nas formas cristalinas α-FeOOH (goethita) e γ-FeOOH (lepidocrocita). Essas espécies se sobrepõem em camadas ao longo da ferrugem.

Consequências da ferrugem

O processo de formação de ferrugem está dentro do campo da corrosão, um problema de grande impacto nas economias dos países industrializados e desenvolvidos.

Estima-se que cerca de 30% da produção mundial de ferro e aço seja perdida com a corrosão, um custo que pode corresponder de 1 a 5% do PIB dos países. Em 2019, por exemplo, o Brasil gastou na faixa de R$ 290 bilhões (cerca de 4% do seu PIB) com manutenção da corrosão.

Os custos com a manutenção de estruturas se fazem necessários, já que a reposição pode ser mais cara, e, além disso, a ferrugem traz sérios danos para a segurança estrutural. Ao oxidar, o metal perde suas boas propriedades mecânicas. Os óxidos formados, em geral, são quebradiços e podem comprometer peças, estruturas e equipamentos. Não só isso, podem também contaminar o produto acondicionado, se este, por exemplo, for um alimento.

Estrutura metálica tomada pela corrosão.

Além dos custos diretos com a substituição e manutenção das peças enferrujadas, a ferrugem pode trazer também problemas indiretos. Uma estrutura como uma ponte ou um viaduto, que precisa ser fechada para manutenção, pode ocasionar grandes transtornos no deslocamento das pessoas, afetando comunidades e a rotina de trabalho. Maquinários enferrujados podem ter perda de eficiência ou podem ser retirados da linha de produção para manutenção, diminuindo assim a produtividade.

Como evitar a ferrugem?

Atualmente já existem técnicas antioxidativas ou anticorrosivas que diminuem drasticamente a formação da ferrugem nas peças metálicas. Entre elas, podemos destacar algumas, como proteção catódica e anódica, revestimentos anticorrosivos e inibidores de corrosão.

 Protetores catódicos em casco de navio.

Na proteção catódica, o metal de interesse é protegido por um metal de mais fácil oxidação (menor potencial de redução) inserido em sua estrutura, o que dá origem a uma célula galvânica. Dessa forma, o metal inserido atua como ânodo, oxida-se, e então protege a estrutura metálica de interesse, que atua como cátodo e se mantém em sua forma reduzida (metálica). O ânodo inserido é comumente conhecido, nessa técnica, como “metal de sacrifício”, justamente por se oxidar no lugar de outro.

A utilização de revestimentos impede que a estrutura metálica entre em contato com o meio oxidativo, criando assim uma barreira que vai dificultar ou até mesmo impedir a formação da ferrugem. Um exemplo são as tintas de epóxido e o zarcão, que protegem tubulações, grades, portões, entre outros itens. Outro revestimento conhecido é a galvanização, que consiste em revestir a peça de ferro com um metal menos nobre. É o caso dos parafusos zincados, em que a estrutura de ferro é revestida pelo metal zinco.

Operário fazendo a galvanização do aço.

Já os inibidores de corrosão são substâncias químicas, de natureza orgânica ou inorgânica, que são adicionadas ao meio com a finalidade de impedir o processo de formação de ferrugem. A ideia é gerar produtos no meio que formem películas protetoras e que atuem como barreira ao metal, dificultando o contato do meio oxidante.

Qual a diferença entre ferrugem e corrosão?

A ferrugem é, na verdade, a substância formada durante o processo de corrosão do ferro e de suas ligas, como o aço. A corrosão é mais ampla, pois diz respeito a todos os processos de destruição espontânea de metais e ligas, causados por interações químicas, bioquímicas e eletroquímicas entre os metais e as ligas com o meio ambiente. Durante a corrosão, os metais são convertidos em compostos termodinamicamente mais estáveis, como óxidos, hidróxidos, sais ou carbonatos. Assim sendo, podemos dizer que a formação da ferrugem é um dos processos da corrosão.

Alguns autores dizem que a ferrugem é consequência do processo de corrosão úmida ou corrosão eletroquímica, visto que tal processo necessita da presença de água para ocorrer e acontece espontaneamente.

Fontes

AZ RUST. What is Rust & The Most Common Types of Rust. AZ Rust, c2023. Disponível em: https://azrust.com/what-is-rust/.

CARNEIRO, C. Gastos para conter corrosão do aço impactam 4% do PIB brasileiro. SEGS, 2022. Disponível em: https://www.segs.com.br/mais/economia/338194-gastos-para-conter-corrosao-do-aco-impactam-4-do-pib-brasileiro.

CURTISS-WRIGHT SURFACE TECHNOLOGIES. Types of rusting and how metal surface treatment can help prevent oxidation. Curtiss-Wright Surface Technologies, 2020. Disponível em: https://www.cwst.co.uk/types-of-rusting-and-how-metal-surface-treatment-can-help-prevent-oxidation/.

MERCIER, J. P.; ZAMBELLI, G.; KURZ, W. Corrosion, degradation and ageing. In: Introduction to Materials Science, p. 379-399, 2002.

MERÇON, F.; GUIMARÃES, P. I. C.; MAINIER, F. B. Corrosão: Um Exemplo Usual de Fenômeno Químico. Química Nova Na Escola. n. 19, 2004. Disponível em: http://qnesc.sbq.org.br/online/qnesc19/a04.pdf.

POPOV, B. N. Corrosion Engineering: Principles and Solved Problems. Oxford: Elsevier, 2015.

SILVA, M. V. F.; PEREIRA, M. C.; CODARO, E. N.; ACCIARI, H. A. Corrosão do aço-carbono: uma abordagem do cotidiano no ensino de química. Química Nova, v. 38, n. 2, p. 293-296, 2015. Disponível em: https://s3.sa-east-1.amazonaws.com/static.sites.sbq.org.br/quimicanova.sbq.org.br/pdf/v38n2a22.pdf.

 

Por Stéfano Araújo Novais
Professor de Química

Uma superfície com várias camadas enferrujadas evidenciando os efeitos da ferrugem.
Uma superfície com várias camadas enferrujadas.
Deseja fazer uma citação?
NOVAIS, Stéfano Araújo. "Ferrugem"; Brasil Escola. Disponível em: /quimica/ferrugem.htm. o em 29 de maio de 2025.