Astato (At) 75l5e

Astato é um elemento químico radioativo e instável, pertencente ao grupo dos halogênios, encontrado em quantidades muito pequenas na natureza. Seu tempo de meia-vida é curto. 5f6jd

O astato é um elemento químico de símbolo “At” e número atômico 85 que pertence ao grupo dos halogênios, localizado no grupo 17 e quinto período da tabela periódica, com uma ocorrência na crosta terrestre estimada em menos de um grama. Embora possua algumas características de metais, ele é quimicamente um ametal com capacidade de formar ligações covalentes. Além disso, devido à sua radioatividade e difícil obtenção, sua química é teórica e baseada principalmente em modelagens, já que a quantidade disponível para experimentos é muito pequena e a maioria dos seus isótopos tem uma vida útil muito curta. 6p5g12

Leia também: Quais elementos fazem parte do grupo dos halogênios?

Resumo sobre astato 5mz5t

  • Astato é um halogênio, ametal com algumas características de metal, altamente radioativo e instável.
  • É sólido à temperatura ambiente, com propriedades teóricas que sugerem uma aparência metálica escura.
  • Compartilha algumas características com os outros halogênios, mas com reatividade geralmente menor.
  • O seu estudo oferece informações sobre a química dos elementos pesados e radioativos.
  • É encontrado em quantidades extremamente pequenas na natureza, principalmente como produto do decaimento de elementos mais pesados.
  • Pode ser produzido artificialmente em aceleradores de partículas por meio do bombardeio de bismuto ou outros elementos com partículas alfa.
  • Pode formar compostos semelhantes aos de outros halogênios, embora sua química exata ainda não seja bem compreendida.
  • Não possui aplicações práticas amplas devido à sua radioatividade e escassez.
  • A exposição direta deve ser evitada, e os procedimentos de segurança incluem o uso de barreiras de proteção e equipamentos especializados para evitar a contaminação e a exposição à radiação.
  • Foi descoberto em 1940 pelos químicos Fredrick Oskar Giesel e Dale R. Corson.

Propriedades do astato 5a6e6z

  • Símbolo: At.
  • Massa atômica: 210 u.
  • Número atômico: 85.
  • Configuração eletrônica: [Xe] 4f14 5d10 6s2 6p5.
  • Eletronegatividade: 2,2 (na escala Pauling).
  • Eletroafinidade: -270 kJ/mol.
  • Série química: halogênios.
  • Ponto de fusão: 302°C.
  • Ponto de ebulição: 337°C.
  • Energia de ionização: 890 kJ/mol (primeira ionização).
  • Densidade: ~ 6,35 g/cm³.
  • Estado de oxidação: -1, +1, +3, +5, +7.
  • Raio atômico (van der Waals): 202 pm.

Características do astato 236y4m

O astato é sólido à temperatura ambiente, embora não se tenha uma descrição visual precisa devido à sua instabilidade e baixa quantidade disponível. Contudo, com base em suas propriedades teóricas e na comparação com outros halogênios, acredita-se que ele seja um não metal (ametal), possivelmente com uma aparência metálica escura. Seu ponto de fusão e ebulição são estimados para estar em uma faixa mais alta do que o iodo, embora esses valores exatos não sejam bem conhecidos devido à dificuldade de realizar medições precisas.

Embora seja um halogênio, ele possui algumas características que o aproximam dos metais, como a capacidade de formar cátions, o que é incomum para ametais. Além disso, provavelmente forma compostos com estados de oxidação variados, similar ao iodo, e pode apresentar uma química que se assemelha ao polônio, outro elemento pesado. Entretanto, o seu comportamento em reações químicas sugere que ele atua como um halogênio menos reativo do que o flúor e o cloro, porém mais reativo que o iodo e o brometo, e tende a formar ligações covalentes.

Veja também: Como a radioatividade é utilizada no nosso dia a dia

Onde o astato é encontrado? 5h6e4s

O astato é extremamente raro na natureza, encontrado, portanto, apenas em vestígios na crosta terrestre, sendo formado principalmente através do decaimento de elementos mais pesados, como o urânio e o tório, e ocorre em quantidades ínfimas devido à sua meia-vida muito curta. Em vista disso, ele é geralmente produzido em laboratório por meio de reações nucleares, especialmente em aceleradores de partículas, para fins de pesquisa científica e aplicações médicas limitadas.

Obtenção do astato 175b5j

A obtenção do astato ocorre principalmente em laboratórios, devido a sua escassez na natureza. Sendo assim, o seu processo de produção ocorre por meio de reações nucleares, cujas etapas serão descritas a seguir:

  1. Produção inicial: consiste em bombardear átomos de bismuto com partículas alfa (núcleos de hélio) em um acelerador de partículas.
  2. Formação de astato: essa reação nuclear resulta na produção de átomos de astato, que são altamente radioativos e possuem meia-vida curta.
  3. Separação e purificação: após a produção, os átomos de astato são rapidamente separados de outros produtos de reação e purificados utilizando técnicas de extração química e cromatografia.

Vale ressaltar que essas etapas são realizadas rapidamente para evitar a desintegração do astato antes de ser utilizado em pesquisas científicas ou aplicações específicas, como na medicina nuclear.

Ocorrência do astato wc5m

O astato ocorre como resultado do decaimento de elementos pesados, como o urânio e o tório, em minerais que contêm esses elementos. Devido à sua meia-vida muito curta, ele está presente apenas em traços muito pequenos, com uma distribuição bastante esparsa na crosta terrestre. Em meio a isso, na literatura, ele é conhecido por ter diversos isótopos, todos altamente radioativos, cuja variação em número de massa vai de 191 a 223, sendo que os mais comuns e estudados são:

  • Astato-210: esse tem uma meia-vida de cerca de 8,1 horas e é utilizado principalmente em pesquisas científicas.
  • Astato-211: é o isótopo mais utilizado na medicina nuclear, especialmente em tratamentos de terapia alfa, devido à sua meia-vida de aproximadamente 7,2 horas e à sua emissão de partículas alfa.
  • Astato-213: é menos comum e possui uma meia-vida de apenas 125 nanossegundos, sendo de interesse principalmente para estudos teóricos e em física nuclear.

Aplicações do astato 6q545w

As aplicações do astato são limitadas, mas ele tem algumas utilizações importantes, especialmente na medicina nuclear. Sendo assim, abaixo destacamos os principais usos desse elemento:

  • Terapia Alfa Direcionada (TAT): em tratamentos de câncer, o astato-211 emite partículas alfa, que podem destruir células cancerígenas com alta precisão, minimizando danos aos tecidos saudáveis.
  • Pesquisas científicas: nos estudos sobre propriedades químicas e físicas de elementos superpesados, ele é utilizado para entender melhor o comportamento dos elementos na tabela periódica e suas reações.
  • Radiofármacos experimentais: é usado no desenvolvimento de novos compostos radioativos para diagnóstico e tratamento de doenças, podendo ajudar na detecção e tratamento precoce de diversas condições médicas.
  • Estudos de radioquímica: a investigação das suas propriedades químicas, em diferentes estados de oxidação, é importante para o desenvolvimento de métodos de síntese e separação de isótopos radioativos.

Precauções com o astato 4it5a

Ao lidar com o astato, é crucial tomar várias precauções devido à sua alta radioatividade e instabilidade, como, por exemplo:

  • Utilizar blindagem adequada, como barreiras de chumbo, para proteger contra a radiação alfa emitida.
  • Realizar manipulações em câmaras de contenção ou capelas de exaustão, que são especialmente projetadas para evitar a dispersão de material radioativo e proteger os operadores.
  • Utilizar luvas, aventais de chumbo e óculos de segurança para evitar a contaminação direta da pele e dos olhos.
  • Implementar sistemas de monitoramento contínuo para detectar níveis de radiação no ambiente de trabalho. Por exemplo, o uso de detectores de radiação e dosímetros pessoais para medir a exposição dos trabalhadores.
  • Armazenar o astato em recipientes apropriados e em locais seguros, longe de áreas de trabalho frequentes.
  • Seguir rigorosamente os protocolos para descarte de resíduos radioativos, garantindo que materiais contaminados sejam tratados de acordo com as regulamentações de segurança nuclear.

Curiosidades sobre o astato 612gc

  • O nome “astato” vem do grego astatos, que significa "instável", devido à sua alta radioatividade e tendência a decair rapidamente.
  • Nunca foi obtido em forma pura, pois qualquer amostra macroscópica se vaporiza devido ao calor gerado pela sua própria radioatividade. Isso faz com que o astato seja um dos elementos mais difíceis de estudar.
  • É o elemento mais raro da crosta terrestre, com uma quantidade extremamente limitada. Estima-se que haja menos de um grama de astato em toda a Terra em qualquer momento.

Saiba mais: Urânio — elemento extremamente reativo muito explorado para fins bélicos

História do astato 27245d

A história do astato começa em meados do século XX, durante uma era de intensas pesquisas em física nuclear e química dos elementos pesados. Em 1940, os químicos Fredrick Oskar Giesel e Dale R. Corson, trabalhando na Universidade da Califórnia, Berkeley, conseguiram sintetizar o astato pela primeira vez. Eles bombardearam átomos de bismuto com partículas alfa em um ciclotron, um tipo de acelerador de partículas, produzindo o novo elemento. A descoberta foi um marco na Química, pois o astato preencheu uma lacuna na tabela periódica e completou o grupo dos halogênios.

Nesse sentido, a radioatividade intensa do astato e a rápida desintegração de seus isótopos tornaram a sua obtenção e estudo bastante desafiadores. Ao longo dos anos, poucas amostras foram produzidas e manipuladas, tornando esse elemento um dos mais raros e menos compreendidos. Ademais, a contribuição dele para a ciência, embora limitada em termos práticos, é significativa no contexto da química nuclear e da física dos elementos. Isto é, a compreensão de suas propriedades, mesmo que incompleta, ajuda a esclarecer comportamentos gerais dos halogênios e fornece dados importantes sobre a interação entre radioatividade e estrutura atômica.

Fontes

ALBERTSSON, P. et al. Astatine-211 based radionuclide therapy: Current clinical trial landscape. Frontiers in Medicine, [s. l.], v. 9, 2023. Disponível em: https://www.frontiersin.org/articles/10.3389/fmed.2022.1076210/full.

ANDERS, E. Technetium and Astatine Chemistry. Annual Review of Nuclear Science, [s. l.], v. 9, n. 1, p. 203–220, 1959. Disponível em: https://www.annualreviews.org/doi/10.1146/annurev.ns.09.120159.001223.

EYCHENNE, R. et al. Radiolabeling chemistry with heavy halogens iodine and astatine. In: NUCLEAR MEDICINE AND MOLECULAR IMAGING. [S. l.]: Elsevier, 2022. v. 1, p. 121–132. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/B9780128229606000132.

GUÉRARD, F. et al. Advances in the Chemistry of Astatine and Implications for the Development of Radiopharmaceuticals. s of Chemical Research, [s. l.], v. 54, n. 16, 2021.

HERMANN, A.; HOFFMANN, R.; ASHCROFT, N. W. Condensed Astatine: Monatomic and Metallic. Physical Review Letters, [s. l.], v. 111, n. 11, p. 116404, 2013. Disponível em: https://link.aps.org/doi/10.1103/PhysRevLett.111.116404.

JOHNSON, G. L.; LEININGER, R. F.; SEGRÈ, E. Chemical Properties of Astatine. I. The Journal of Chemical Physics, [s. l.], v. 17, n. 1, p. 1–10, 1949. Disponível em: https://pubs.aip.org/j/article/17/1/1/200548/Chemical-Properties-of-Astatine-I.

KOSTECKA, K. Astatine - The Elusive One. Substantia, [s. l.], v. 4, n. 1, p. 63–70, 2021.

LEIMBACH, D. et al. The electron affinity of astatine. Nature Communications, [s. l.], v. 11, n. 1, p. 3824, 2020. Disponível em: https://www.nature.com/articles/s41467-020-17599-2.

MCINTOSH, L. A. et al. Production, isolation, and shipment of clinically relevant quantities of astatine-211: A simple and efficient approach to increasing supply. Nuclear Medicine and Biology, [s. l.], v. 126–127, p. 108387, 2023. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S0969805123000756.

NATIONAL CENTER FOR BIOTECHNOLOGY INFORMATION. PubChem. PubChem Element Summary for AtomicNumber 85, Astatine. [S.l.]. National Library of Medicine (US), National Center for Biotechnology Information, 2024. Disponível em: https://pubchem.ncbi.nlm.nih.gov/element/85.

R. ZALUTSKY, M.; PRUSZYNSKI, M. Astatine-211: Production and Availability. Current Radiopharmaceuticalse, [s. l.], v. 4, n. 3, p. 177–185, 2011. Disponível em: http://www.eurekaselect.com/openurl/content.php?genre=article&issn=1874-4710&volume=4&issue=3&spage=177.

ROTHE, S. et al. Measurement of the first ionization potential of astatine by laser ionization spectroscopy. Nature Communications, [s. l.], v. 4, n. 1, p. 1835, 2013. Disponível em: https://www.nature.com/articles/ncomms2819.

TOYOSHIMA, A.; SHINOHARA, A. Nuclear Chemistry of Astatine (At). Radioisotopes, [s. l.], v. 67, n. 10, 2018.

VAIDYANATHAN, G.; ZALUTSKY, M. Astatine Radiopharmaceuticals: Prospects and Problems. Current Radiopharmaceuticalse, [s. l.], v. 1, n. 3, p. 177–196, 2008. Disponível em: http://www.eurekaselect.com/openurl/content.php?genre=article&issn=1874-4710&volume=1&issue=3&spage=177.

WILBUR, D. S. Enigmatic astatine. Nature Chemistry, [s. l.], v. 5, n. 3, p. 246–246, 2013. Disponível em: https://www.nature.com/articles/nchem.1580.


Fonte: Brasil Escola - /quimica/astato-at.htm