Aplicações da força centrípeta em lombadas e depressões 6t4v6n

A força centrípeta é aplicada em lombadas, depressões e muitas outras situações cotidianas, como curvas em estradas e na ação de girar rapidamente um balde com água. 5km2

A aplicação da força centrípeta em lombadas e depressões ocorre da seguinte forma: nas lombadas, a força centrípeta é igual à diferença entre a força peso e a força normal. Nas depressões, a força centrípeta é igual à diferença entre a força normal e a força peso. A força centrípeta é uma grandeza física responsável por alterar o sentido e direção do vetor velocidade do corpo, direcionando-o para o centro da trajetória circular. Em razão disso, ela possui diversas aplicações, como é o caso das lombadas e depressões. 6j6b1c

Leia também: O que é a força centrífuga?

Resumo sobre aplicações da força centrípeta em lombadas e depressões 5x6u2f

  • A força centrípeta é uma força que sempre aponta para o centro da trajetória.

  • As lombadas são trechos elevados de concreto ou asfalto nas pistas.

  • As depressões são trechos de declives nas pistas.

  • Nas lombadas, a força peso é maior que a força normal.

  • Nas depressões, a força normal é maior que a força peso.

O que é a força centrípeta? 4w3z4r

A força centrípeta é uma força capaz de direcionar os corpos para o centro da trajetória durante uma rotação ou movimento circular. Ela é calculada por meio do produto da massa do corpo com a sua aceleração centrípeta, descrito pela fórmula abaixo:

\(F_{\text{}} = m \cdot a_{\text{}} \)

  • \(F_{\text{}} \) é a força centrípeta, medida em Newton [N];

  • m é a massa do corpo, medida em quilograma [kg];

  • \(a_{\text{}} \) é a aceleração centrípeta, medida em \(m / {s} ^ {2}\).

A aceleração centrípeta pode ser calculada por meio da fórmula:

\(a_{\text{}} = \frac{m \cdot v^2}{R} \)

  • m é a massa do corpo, medida em quilograma [kg];

  • \(a_{\text{}} \) é a aceleração centrípeta, medida em \(m / {s} ^ {2}\);

  • v é a velocidade escalar do corpo, medida em \(m / {s}.\)

  • R é o raio da trajetória, medido em metros [m].

Ou da fórmula:

\(a_{\text{}} = \omega^2 \cdot R \)

  • \(a_{\text{}} \) é a aceleração centrípeta, medida em \(m / {s} ^ {2}\);

  • R é o raio da curva, medido em metros [m];

  • ω é a velocidade angular, medida em \(rad /s \)

Como é a aplicação da força centrípeta em lombadas? 4456u

As lombadas, ou quebra-molas, são superfícies elevadas de concreto ou asfalto empregadas para diminuir a velocidade dos automóveis em ruas, avenidas e rodovias. Quando os automóveis am por cima das lombadas, eles sofrem a ação de três forças: força peso, força normal e força centrípeta (nessa situação estamos desconsiderando as forças de atrito e resistência do ar), conforme descrito na imagem abaixo:

Ilustração da aplicação das forças centrípeta, normal e peso em um automóvel, sobre uma lombada.
Forças centrípeta, normal e peso aplicadas em uma lombada. (Créditos: Gabriel Franco | Brasil Escola)

Nessa situação, a força peso exercida no automóvel é maior que a força normal exercida pela superfície no automóvel para mantê-lo na trajetória. E a força centrípeta aponta para baixo, já que ela sempre aponta para o centro da trajetória. Analisando essa situação é possível encontrarmos a fórmula que relaciona a força peso e a força normal à força centrípeta.

\(F_{R} = F_{} \)

\(P - N = m \cdot a_{\text{}} \)

  • \({F_R}\) é a força resultante, medida em Newton [N];

  • \(F_{} \) é a força centrípeta, medida em Newton [N];

  • P é a força peso, medida em Newton [N];

  • N é a força normal, medida em Newton [N];

  • m é a massa do corpo, medida em quilograma [kg];

  • \(a_{\text{}} \) é a aceleração centrípeta, medida em \(m / {s} ^ {2}\).

Exemplo: Determine a intensidade da força normal que a pista exerce sobre um carro de 1.000 kg que atravessa uma lombada de raio 100 m com velocidade de 30 m/s. Considere a aceleração da gravidade igual a \(10 {m} / {{s} ^ {2}}\).

\(F_{R} = F_{} \)

\(P - N = m \cdot a_{\text{}} \)

\(m \cdot g - N = \frac{m \cdot v^2}{R} \)

\(1000 \cdot 10 - N = \frac{1000 \cdot 30^2}{100} \)

\(10000-N=9000\)

\(N=10000-9000\)

\(N=1000 N\)

Saiba mais: Afinal, o que é força?

Como é a aplicação da força centrípeta em depressões? 2u2w6

As depressões são regiões esburacadas ou com declives existentes em diversas ruas, avenidas e rodovias. Quando os automóveis am por cima das depressões, eles sofrem a ação de três forças: força peso, força normal e força centrípeta (nessa situação estamos desconsiderando as forças de atrito e resistência do ar), conforme descrito na imagem abaixo:

Ilustração da aplicação das forças centrípeta, normal e peso em um automóvel, em uma depressão.
Forças centrípeta, normal e peso aplicadas em uma depressão. (Créditos: Gabriel Franco | Brasil Escola)

Nessa situação, a força normal exercida pela superfície no automóvel é maior que a força peso exercida no automóvel para mantê-lo na trajetória. E a força centrípeta aponta para cima, já que ela sempre aponta para o centro da trajetória. Analisando essa situação é possível encontrarmos a fórmula que relaciona a força peso e a força normal à força centrípeta.

\(F_{R} = F_{} \)

\(N - P = m \cdot a_{\text{}} \)

  • \({F_R}\) é a força resultante, medida em Newton [N];

  • \(F_{} \) é a força centrípeta, medida em Newton [N];

  • N é a força normal, medida em Newton [N];

  • P é a força peso, medida em Newton [N];

  • m é a massa do corpo, medida em quilograma [kg];

  • \(a_{\text{}} \) é a aceleração centrípeta, medida em \(m / {s} ^ {2} \).

Exemplo: Determine a intensidade da força normal que a pista exerce sobre um carro de 800 kg que atravessa um declive de raio 40 m com velocidade de 50 m/s. Considere a aceleração da gravidade igual a \(10 {m} / {{s} ^ {2}}\).

\(F_{R} = F_{} \)

\(N - P = m \cdot a_{\text{}} \)

\(N - m \cdot g = \frac{m \cdot v^2}{R} \)

\(N - 800 \cdot 10 = \frac{800 \cdot 50^2}{40} \)

\(N-8000=50000\)

\(N=50000+8000\)

\(N=58000 N\)

Aplicações da força centrípeta em outras situações do cotidiano 3635a

Existem diversas outras aplicações da força centrípeta no cotidiano. Pensando nisso, selecionamos algumas delas abaixo:

  • globo da morte;

  • curvas em estradas;

  • brinquedo do parque de diversões chapéu mexicano;

  • girar rapidamente um balde com água;

  • esporte olímpico arremesso de peso.

Fontes

HALLIDAY, D.; RESNICK, R.; WALKER, J. Fundamentos da Física: Mecânica. 8. ed. Rio de Janeiro, RJ: LTC, 2009.

NUSSENZVEIG, H. M. Curso de física básica: Mecânica (vol. 1). 5 ed. São Paulo: Editora Blucher, 2015.


Fonte: Brasil Escola - /fisica/aplicacoes-forca-centripeta-lombadas-depressoes.htm