Eletromagnetismo 644m18

O eletromagnetismo é uma área da Física que estuda a eletricidade e o magnetismo simultaneamente. É importante para o desenvolvimento de dispositivos elétricos e eletrônicos. 175x5g

O eletromagnetismo é uma das grandes áreas estudadas na Física, seu objeto de estudo é a conexão entre os fenômenos da eletricidade e do magnetismo. Seu estudo teve enormes implicações na tecnologia, já que permitiu o desenvolvimento de motores, baterias, televisores, celulares, computadores, energia elétrica, internet e muito mais. 733u2p

Leia também: Ondas eletromagnéticas — o que são, como são usadas no dia a dia

Resumo sobre eletromagnetismo 6v1l2e

  • O eletromagnetismo é a parte da Física que abrange a eletricidade e o magnetismo.
  • No eletromagnetismo, estudamos diversas fórmulas, como a lei de Coulomb e a lei de Faraday-Lenz.
  • Seu estudo permitiu a criação de toda a tecnologia usada atualmente, além de colaborar na investigação da origem da matéria.
  • O estudo da eletricidade e do magnetismo foi unificado em eletromagnetismo a partir do século 19.

O que é eletromagnetismo? 3h4x3y

O eletromagnetismo é uma área de estudo da Física que analisa os fenômenos elétricos e os fenômenos magnéticos de maneira unificada. Durante o ensino médio, para facilitar a compreensão, o eletromagnetismo é estudado separado em duas áreas: eletricidade e magnetismo. A eletricidade abrange os estudos da eletrostática, desde lei de Coulomb até a lei de Gauss, e da eletrodinâmica, desde potencial elétrico até circuitos elétricos. Já o magnetismo abrange os estudos desde o campo magnético até as equações de Maxwell.

Principais fenômenos e conceitos do eletromagnetismo 1s6e5q

No eletromagnetismo estudamos diversos conceitos, abaixo selecionamos alguns dos principais.

  • Carga elétrica: é uma propriedade inerente à matéria, sendo quantizada e conservada. Sua unidade de medida pelo Sistema Internacional de Unidades é o Coulomb [C].
  • Força elétrica: é a força de atração ou repulsão entre diferentes cargas elétricas. Sua unidade de medida é o Newton [N].
  • Campo elétrico: é a propriedade física produzida por um corpo eletricamente carregado. Sua unidade de medida é o Newton por Coulomb [N/C].
  • Lei de Gauss: relaciona o fluxo do campo elétrico em uma superfície gaussiana com a carga elétrica que está em seu interior.
  • Potencial elétrico: é o trabalho da força elétrica para transportar uma carga elétrica entre dois pontos em uma região com campo elétrico. Sua unidade de medida é o Volt [V].
  • Capacitância: indica quanto um capacitor consegue armazenar cargas elétricas. Sua unidade de medida é o Farad [F].
  • Corrente elétrica: é o fluxo de cargas elétricas no interior de um corpo durante um intervalo de tempo. Sua unidade de medida é o Ampere [A].
  • Potência elétrica: mensura a quantidade de energia elétrica que um circuito elétrico é capaz de consumir em um intervalo de tempo. Sua unidade de medida é o Watt [W].
  • Resistência elétrica: é uma propriedade física capaz de resistir à propagação de corrente elétrica. Sua unidade de medida é o Ohm [Ω].
  • Tensão elétrica: é a diferença de potencial elétrico entre dois pontos em um circuito elétrico. Sua unidade de medida é o Volt [V].
  • Campo magnético: é a propriedade física inerente à matéria ou produzida pelo movimento de partículas eletricamente carregadas. Sua unidade de medida é o Tesla [T].
  • Força magnética: é a força de interação entre corpos com propriedades magnéticas. Sua unidade de medida é o Newton [N].
  • Fluxo magnético: é o fluxo de campo magnético que atravessa uma superfície (como bobina, solenoide ou espira). Sua unidade de medida é o Weber [Wb].
  • Lei de Faraday-Neumann-Lenz: diz respeito à geração de corrente elétrica induzida e de força eletromotriz induzida quando o fluxo magnético é variado em uma superfície (como bobina, solenoide ou espira).
  • Equações de Maxwell: conjunto de equações que englobam as leis do eletromagnetismo, possibilitando diversas análises a respeito de fenômenos estudados na eletricidade, no magnetismo e na óptica.

Veja também: O que afirmam as três leis de Ohm?

Quais são as fórmulas do eletromagnetismo? 1a1820

→ Fórmula da carga elétrica 1112h

\(Q=n\cdot e\)

Q é a carga elétrica total de um corpo, medida em Coulomb [C].

n é a quantidade de elétrons ou prótons em falta ou em excesso, medida em Coulomb [C].

e é a carga elementar ou carga do elétron, cujo valor é \( \pm1,6\cdot{10}^{-19}C\), (positivo para prótons e negativo para elétrons).

→ Fórmula da força elétrica  212i4k

\(F=k\cdot\frac{\left|Q_1\right|\cdot\left|Q_2\right|}{d^2}\)

F é a força de interação entre as partículas eletricamente carregadas, medida em Newton [N].

\(\left|Q_1\right| e \left|Q_2\right|\) são os módulos das cargas das partículas, medidos em Coulomb [C].

d é a distância entre as cargas, medida em metros [m].

k é a constante eletrostática do meio, medida em \({{\left(N\cdot m\right)^2}/{C}}^2\).

→ Fórmula do campo elétrico 645z

\(E=k\frac{\left|Q\right|}{d^2}\)

E é o campo elétrico, medido em Newton [N].

\(\left|Q\right|\) é o módulo da carga da partícula geradora do campo, medido em Coulomb [C].

d é a distância entre as cargas, medida em metros [m].

k é a constante eletrostática do meio, medida em \({{\left(N\cdot m\right)^2}{C}}/^2\).

→ Fórmula da lei de Gauss 5v3t13

\(\mathrm{\Phi}=\frac{q_{env}}{\varepsilon_o}\)

Φ é o fluxo total de um campo elétrico sobre uma superfície gaussiana, medido em [\({N\cdot m^2}/{C}\)].

qenv é a carga elétrica envolvida pela superfície, medida em Coulomb [C].

εo é a constante de permissividade do vácuo, que vale \(8,85418782\cdot{10}^{-12}{C^2}/{N\cdot m^2}\).

→ Fórmula do potencial elétrico 3663h

\(V_A=\frac{W_{AB}}{q}\)

VA é o potencial elétrico no ponto A, medido em Volts [V].

WAB é o trabalho da força elétrica para deslocar uma carga do ponto A ao ponto B, medido em Joule [J].

q é a carga elétrica, medida em Coulomb [C].

→ Fórmula da diferença de potencial elétrico ou tensão elétrica 5f6c1b

\(U=V_B-V_A\)

U é a diferença de potencial elétrico (ddp), medida em Volts [V].

VA é o potencial elétrico no ponto A, medido em Volts [V].

VB é o potencial elétrico no ponto B, medido em Volts [V].

→ Fórmula da capacitância 626rz

\(C=\frac{Q}{V}\)

C é a capacitância, medida em Faraday [F] ou Coulomb/Volt [C/V].

Q é a carga armazenada, medida em Ampere [A].

V é o potencial elétrico, medido em Volt [V].

→ Fórmula da corrente elétrica 731n51

\(U=R\cdot i\)

U é a tensão elétrica, medida em Volt [V].

R é a resistência equivalente, medida em Ohm [Ω].

i é a corrente elétrica, medida em Ampere [A].

→ Fórmula da potência elétrica 2i5i1d

\(P=R\cdot i^2=\frac{U^2}{R}=i\cdot∆U\)

P é a potência elétrica, medida em Watt [W].

R é a resistência elétrica, medida em Ohm [Ω].

i é a corrente elétrica, medida em Ampere [A].

U é a tensão elétrica, medida em Volt [V].

∆U é a variação de tensão elétrica, também chamada por diferença de potencial elétrico, medida em Volt [V].

→ Fórmula da 1ª lei de Ohm 6x1l30

\(R=\frac{U}{i}\)

U é a diferença de potencial (ddp), medida em Volts [V].

R é a resistência elétrica, medida em Ohm [Ω].

i é a corrente elétrica, medida em Ampere [A].

→ Fórmula da 2ª lei de Ohm 3z23q

\(\rho=\frac{R\cdot A}{L}\)

ρ é a resistividade do material, medida em \(\left[\mathrm{\Omega}\cdot m\right]\).

R é a resistência elétrica, medida em Ohm [Ω].

L é o comprimento do condutor, medido em metros [m].

A é a área de secção transversal do condutor, medida em [m2].

→ Fórmula do campo magnético em uma espira circular 72z2j

\(B=\frac{\mu_o\cdot i}{2\cdot R}\)

B é o campo magnético, medido em Tesla [T].

μo é a constante de permeabilidade magnética do vácuo, seu valor é \( 4\pi\cdot{10}^{-7}T\cdot{m}/{A}\).

i é a corrente elétrica, medida em Ampere [A].

R é raio da espira, medido em metros [m].

→ Fórmula do campo magnético em uma bobina chata 6s5e3d

\(B=N\cdot\frac{\mu_o\cdot i}{2\cdot R}\)

B é o campo magnético, medido em Tesla [T].

N é o número de espiras da bobina.

μo é a constante de permeabilidade magnética do vácuo, seu valor é \(4\pi\cdot{10}^{-7}T\cdot{m}/{A}\).

i é a corrente elétrica, medida em Ampere [A].

R é raio da bobina, medido em metros [m].

→ Fórmula do campo magnético em um condutor reto  3bp24

\(B=N\cdot\frac{\mu_o\cdot i}{l}\)

B é o campo magnético, medido em Tesla [T].

μo é a constante de permeabilidade magnética do vácuo, seu valor é \(4\pi\cdot{10}^{-7}T\cdot{m}/{A}\).

i é a corrente elétrica, medida em Ampere [A].

d é distância ao fio, medida em metros [m].

→ Fórmula do campo magnético no interior de um solenoide 5k8

\(B=N\cdot\frac{\mu_o\cdot i}{l}\)

B é o campo magnético, medido em Tesla [T].

μo é a constante de permeabilidade magnética do vácuo, seu valor é \(4\pi\cdot{10}^{-7}T\cdot{m}/{A}\).

i é a corrente elétrica, medida em Ampere [A].

N é o número de espiras ou voltas no solenoide.

l é o comprimento do solenoide, medido em metros [m].

→ Fórmula da força magnética sobre partículas carregadas 4a5x4b

\(F=\left|q\right|\cdot v\cdot B\cdot sin\theta\)

F é a força magnética, medida em Newton [N].

q é o módulo da carga elétrica em excesso ou falta, medido em Coulomb [C].

v é a velocidade da partícula em relação ao campo magnético, medida em [ms].

B é o campo magnético, medido em Tesla [T].

θ é o ângulo formado entre a velocidade e o campo magnético, medido em graus [°].

→ Fórmula da força magnética sobre condutores retilíneos 2p1p3m

\(F=B\cdot i\cdot l\cdot sin\theta\)

F é a força magnética, medida em Newton [N].

B é o campo magnético, medido em Tesla [T].

i é a corrente elétrica, medida em Ampere [A].

l é o comprimento do fio, medido em metros [m].

θ é o ângulo formado entre o comprimento do fio e o campo magnético, medido em graus [°].

→ Fórmula da força magnética sobre dois condutores retilíneos l2q19

\(F=\mu_o\cdot\frac{i_1\cdot i_2\cdot l}{2\cdot\pi\cdot d}\)

F é a força magnética, medida em Newton [N].

μo é a constante de permeabilidade magnética do vácuo, seu valor é \(4\pi\cdot{10}^{-7}T\cdot{m}/{A}\).

i1 é a corrente elétrica do condutor 1, medida em Ampere [A].

i2 é a corrente elétrica do condutor 2, medida em Ampere [A].

l é o comprimento do fio, medido em metros [m].

d é a distância entre os dois condutores, medida em metros [m].

→ Fórmula do fluxo magnético p58c

\(\phi=B\cdot A\cdot cos\theta\)

ϕ é o fluxo magnético, medido em Weber [Wb] ou [T∙m].

B é o campo magnético, medido em Tesla [T].

A é a área da superfície, medida em [m2].

θ é o ângulo entre a normal ao plano da espira e o vetor campo magnético, medido em graus [°].

→ Fórmula da lei de Faraday-Lenz 7704j

\(\varepsilon=\frac{-\mathrm{\Delta\phi}}{\mathrm{\Delta t}}\)

ε é a força eletromotriz induzida, medida em Volt [V].

Δϕ é a variação de fluxo magnético, medida em Weber [Wb] ou [T∙m].

Δt é a variação de tempo, medida em segundos [s].

→ Equações de Maxwell 302s3a

As equações de Maxwell (em equações integrais), quando não há materiais dielétricos ou magnéticos, são:

  • Lei de Gauss para a eletricidade:

\(\oint{\vec{E}\cdot d\vec{A}}=\frac{q_{env}}{\varepsilon_o}\)

  • Lei de Gauss para o magnetismo:

\(\oint{\vec{B}\cdot d\vec{A}}=0\)

  • Lei de Faraday:

\(\oint{\vec{E}\cdot d\vec{S}}=\frac{-d\mathrm{\Phi}_B}{dt}\)

  • Lei de Ampere-Maxwell:

\(\oint{\vec{B}\cdot d\vec{S}}=\mu_o\cdot\varepsilon_o\cdot\frac{d\mathrm{\Phi}_E}{dt}+\mu_o\cdot i_{env}\)

Aplicações e importância do eletromagnetismo 4dkw

As usinas hidrelétricas funcionam com base em conceitos estudados no eletromagnetismo, como a lei de Faraday.
As usinas hidrelétricas funcionam com base em conceitos estudados no eletromagnetismo, como a lei de Faraday.

O eletromagnetismo é de extrema importância em razão da sua infinidade de aplicações. Com base em seu estudo, foi possível fabricar diversos dispositivos elétricos e eletrônicos, como:

  • motores;
  • baterias;
  • disjuntores;
  • televisores;
  • geladeiras;
  • celulares.

A área também possibilitou o desenvolvimento de circuitos elétricos, redes elétricas, redes de telecomunicação e redes de fibra óptica; além de contribuir significativamente na compreensão da origem da matéria e de seus fenômenos.

Saiba mais: Lei de Biot-Savart — uma das leis que fundamentam o eletromagnetismo

Origem do eletromagnetismo 45o3k

A origem da eletricidade e do magnetismo é datada desde a Grécia Antiga nos séculos VII a.C. e VI a.C., sendo um dos primeiros relatos do polímata Tales de Mileto (623 a.C.-558 a.C.). Dessa forma, durante muitos séculos, estudou-se a eletricidade separada do magnetismo, até que, entre 1820 e 1829, o físico e químico Hans Oersted (1777-1851) descobriu que uma corrente elétrica contínua seria capaz de alterar o movimento da agulha magnética de uma bússola próxima a ele.

Então, a partir desse momento, os cientistas perceberam que havia uma relação entre os fenômenos elétricos e magnéticos e que, portanto, eles deveriam ser estudados como um só, o eletromagnetismo.

Mapa mental: Eletromagnetismo 254z12

Mapa mental sobre eletromagnetismo.

*Baixe o mapa mental sobre eletromagnetismo!

Exercícios resolvidos sobre eletromagnetismo 3pq4z

01) (Mackenzie-SP) Dois corpúsculos eletrizados com cargas elétricas idênticas estão situados no vácuo \((k_o=9\cdot{10}^9N{m^2}/{C^2}) \) e distantes 1 m um do outro. A intensidade da força de interação eletrostática entre eles é \(3,6\cdot{10}^{-2}\). A carga elétrica de cada um desses corpúsculos pode ser (em μC):

a) 9

b) 8

c) 6

d) 4

e) 2

Resolução:

Alternativa E

Calcularemos a carga elétrica desses corpúsculos por meio da lei de Coulomb, dada pela fórmula:

\(F=k_o\cdot\frac{\left|Q_1\right|\cdot\left|Q_2\right|}{d^2}\)

\(3,6\cdot{10}^{-2}=9\cdot{10}^9\cdot\frac{Q^2}{\left(1\right)^2}\)

\(3,6\cdot{10}^{-2}=9\cdot{10}^9\cdot Q^2\)

\(Q^2=\frac{3,6\cdot{10}^{-2}}{9\cdot{10}^9}\)

\(Q^2=0,4\cdot{10}^{-2-9}\)

\(Q^2=0,4\cdot{10}^{-11}\)

\(Q^2=4\cdot{10}^{-12}\)

\(Q=\sqrt{4\cdot{10}^{-12}}\)

\(Q=2\cdot{10}^{-6}\)

\(Q=2\mu C\)

02) (UFV) Se um corpo encontra-se eletrizado positivamente, pode-se afirmar que ele apresenta

a) falta de prótons.

b) excesso de elétrons.

c) falta de elétrons.

d) excesso de nêutrons.

e) falta de nêutrons.

Resolução:

Alternativa C

Quando um corpo está eletrizado positivamente, significa que se retirou elétrons dele, então temos uma falta de elétrons.

Fontes

HALLIDAY, David; RESNICK, Robert; WALKER, Jearl. Fundamentos da Física: Eletromagnetismo (vol. 3). 10. ed. Rio de Janeiro, RJ: LTC, 2016.

NUSSENZVEIG, Herch Moysés. Curso de física básica: Eletromagnetismo (vol. 3). Editora Blucher, 2015.

SAMPAIO, José Luiz; CALÇADA, Caio Sérgio. Universo da Física: Ondulatória. Eletromagnetismo, Física Moderna. São Paulo: Atual, 2005.


Fonte: Brasil Escola - /fisica/eletromagnetismo.htm